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Abstract

In this work we show that randomized (block) coordinate descent methods can be accelerated
by parallelization when applied to the problem of minimizing the sum of a partially separable

smooth convex function and a simple separable convex function. The theoretical speedup, as
compared to the serial method, and referring to the number of iterations needed to approximately
solve the problem with high probability, is a simple expression depending on the number of
parallel processors and a natural and easily computable measure of separability of the smooth
component of the objective function. In the worst case, when no degree of separability is present,
there may be no speedup; in the best case, when the problem is separable, the speedup is equal
to the number of processors. Our analysis also works in the mode when the number of blocks
being updated at each iteration is random, which allows for modeling situations with busy or
unreliable processors. We show that our algorithm is able to solve a LASSO problem involving
a matrix with 20 billion nonzeros in 2 hours on a large memory node with 24 cores.

Keywords: Parallel coordinate descent, big data optimization, partial separability, huge-
scale optimization, iteration complexity, expected separable over-approximation, composite ob-
jective, convex optimization, LASSO.

1 Introduction

Big data optimization. Recently there has been a surge in interest in the design of algorithms
suitable for solving convex optimization problems with a huge number of variables [13, 8]. Indeed,
the size of problems arising in �elds such as machine learning, network analysis, PDEs, truss topology
design and compressed sensing usually grows with our capacity to solve them, and is projected to
grow dramatically in the next decade. In fact, much of computational science is currently facing
the �big data� challenge, and this work is aimed at developing optimization algorithms suitable for
the task.

∗The work of the �rst author was supported by EPSRC grants EP/J020567/1 (Algorithms for Data Simplicity)
and EP/I017127/1 (Mathematics for Vast Digital Resources). The second author was supported by the Centre for
Numerical Algorithms and Intelligent Software (funded by EPSRC grant EP/G036136/1 and the Scottish Funding
Council). An open source code with an e�cient implementation of the algorithm(s) developed in this paper is
published here: http://code.google.com/p/ac-dc/.
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Coordinate descent methods. Coordinate descent methods (CDM) are one of the most suc-
cessful classes of algorithms in the big data optimization domain. Broadly speaking, CDMs are
based on the strategy of updating a single coordinate (or a single block of coordinates) of the vector
of variables at each iteration. This often drastically reduces memory requirements as well as the
arithmetic complexity of a single iteration, making the methods easily implementable and scalable.
In certain applications, a single iteration can amount to as few as 4 multiplications and additions
only [11]! On the other hand, many more iterations are necessary for convergence than it is usual
for classical gradient methods. Indeed, the number of iterations a CDM requires to solve a smooth

convex optimization problem is O(nL̃R
2

ε ), where ε is the error tolerance, n is the number variables

(or blocks of variables), L̃ is the average of the Lipschitz constants of the gradient of the objective
function associated with the variables (blocks of variables) and R is the distance from the starting
iterate to the set of optimal solutions. On balance, as observed by numerous authors, serial CDMs
are much more e�cient for big data optimization problems than most other competing approaches,
such as gradient methods [7, 11].

Parallelization. We wish to point out that for truly huge-scale problems it is absolutely necessary
to parallelize. This is in line with the rise and ever increasing availability of high performance
computing systems built around multi-core processors, GPU-accelerators and computer clusters,
the success of which is rooted in massive parallelization. This simple observation, combined with
the remarkable scalability of serial CDMs, leads to our belief that the study of parallel coordinate
descent methods (PCDMs) is a very timely topic.

Research Idea. The work presented in this paper was motivated by the desire to answer the
following question:

Under what natural and easily veri�able structural assumptions on the objective function
does parallelization of a coordinate descent method lead to acceleration?

Our starting point was the following simple observation. Assume that we wish to minimize a
separable function F of n variables (i.e., a function that can be written as a sum of n functions
each of which depends on a single variable only). The problem of minimizing F can be trivially
decomposed into n independent univariate problems. Now, if we have n processors/threads/cores,
each assigned with the task of solving one of these problems, the number of parallel iterations should
not depend on the dimension of the problem1. In other words, we get an n-times speedup compared
to the situation with a single processor only. Note that any parallel algorithm of this type can
be viewed as a parallel coordinate descent method. Hence, a PCDM with n processors should be
n-times faster than a serial one. If τ processors are used instead, where 1 ≤ τ ≤ n, one would
expect a τ -times speedup.

By extension, one would perhaps expect that optimization problems with objective functions
which are �close to being separable� would also be amenable to acceleration by parallelization, where
the acceleration factor τ would be reduced with the reduction of the �degree of separability�. One
of the main messages of this paper is an a�rmative answer to this. Moreover, we give explicit and
simple formulae for the speedup factors.

1For simplicity, assume the distance from the starting point to the set of optimal solutions does not depend on
the dimension.
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As it turns out, and as we discuss later in this section, many real-world big data optimization
problems are, quite naturally, �close to being separable�. We believe that this means that PCDMs
is a very promising class of algorithms when it comes to solving structured big data optimization
problems.

Minimizing a partially separable composite objective. In this paper we study the problem

minimize f(x) + Ω(x)︸ ︷︷ ︸
def
=F (x)

subject to x ∈ RN , (1)

where f is a (block) partially separable smooth convex function and Ω is a simple (block) separable
convex function. We allow Ω to have values in R∪{∞}, and for regularization purposes we assume
Ω is proper and closed. While (1) is seemingly an unconstrained problem, Ω can be chosen to model
simple convex constraints on individual blocks of variables. Alternatively, this function can be used
to enforce a certain structure (e.g., sparsity) in the solution. For a more detailed account we refer
the reader to [13]. Further, we assume that this problem has a minimum (F ∗ > −∞). What we
mean by �smoothness� and �simplicity� will be made precise in the next section.

Let us now describe the key concept of partial separability. Let x ∈ RN be decomposed into
n non-overlapping blocks of variables x(1), . . . , x(n) (this will be made precise in Section 2). We
assume throughout the paper that f : RN → R is partially separable of degree ω, i.e., that it can
be written in the form

f(x) =
∑
J∈J

fJ(x), (2)

where J is a �nite collection of nonempty subsets of [n]
def
= {1, 2, . . . , n} (possibly containing identical

sets multiple times), fJ are di�erentiable convex functions such that fJ depends on blocks x(i) for
i ∈ J only, and

|J | ≤ ω for all J ∈ J . (3)

Clearly, 1 ≤ ω ≤ n. Most of the many variations of the basic PCDM we analyze in this paper do
not require the decomposition (2) to be known; all we need to know is ω, which is very often an
easily computable quantity.

Examples of partially separable functions. Many objective functions naturally encountered in
the big data setting are partially separable. Here we give examples of three loss/objective functions
frequently used in the machine learning literature and also elsewhere. For simplicity, we assume all
blocks are of size 1 (i.e., N = n). Let

f(x) =
m∑
j=1

L(x,Aj , yj), (4)

where m is the number of examples, x ∈ Rn is the vector of features, (Aj , yj) ∈ Rn×R are labeled
examples and L is one of the three loss functions listed in Table 1. Let A ∈ Rm×n with row j equal
to ATj . Often, each example depends on a few features only; the maximum over all features is the
degree of partial separability ω. More formally, note that the j-th function in the sum (4) in all
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Square Loss 1
2(ATj x− yj)2

Logistic Loss log(1 + e−yjA
T
j x)

Hinge Square Loss 1
2 max{0, 1− yjATj x}2

Table 1: Three examples of loss of functions

cases depends on ‖Aj‖0 coordinates of x (the number of nonzeros in the j-th row of A) and hence
f is partially separable of degree

ω = max
j
‖Aj‖0.

All three functions of Table 1 are smooth (as per the de�nition in the next section). We refer the
reader to [9] for more examples of interesting (but nonsmooth) partially separable functions arising
in graph cuts and matrix completion.

Brief literature review. Several papers were written recently studying the iteration complexity
of serial CDMs of various �avours and in various settings. We will only provide a brief summary
here, for a more detailed account we refer the reader to [13].

Classical CDMs update the coordinates in a cyclic order; the �rst attempt at analyzing the
complexity of such a method is due to [15]. Stochastic/randomized CDMs, that is, methods where
the coordinate to be updated is chosen randomly, were �rst analyzed for quadratic objectives [17,
2], later independently generalized to L1-regularized problems [16] and smooth block-structured
problems [7], and �nally uni�ed and re�ned in [12, 13]. The problems considered in the above
papers are either unconstrained or have (block) separable constraints. Recently, randomized CDMs
were developed for problems with linearly coupled constraints [4, 5].

A greedy CDM for L1-regularized problems was �rst analyzed in [11] and a CDM with inexact
updates was �rst proposed and analyzed in [10]. Partially separable problems were independently
studied in [9], where an asynchronous parallel stochastic gradient algorithm was developed to solve
them. Parallel CDMs were proposed and analyzed in [1, 3].

Contents. We start in Section 2 by describing the block structure of the problem, establishing
notation and detailing assumptions. Subsequently we propose and comment in detail on two parallel
coordinate descent methods. Section 2 ends with a list of some of the contributions/�ndings of this
paper. In Section 3 we deal with issues related to the selection of the blocks to be updated in each
iteration. It will involve the development of some elementary random set theory. Sections 4-5 deal
with issues related to the computation of the update to the selected blocks and develop a theory
of Expected Separable Overapproximation (ESO), which is a novel tool we propose for the analysis
of our algorithms. In Section 6 we analyze the iteration complexity of our methods and �nally,
Section 7 reports on some very promising preliminary computational experiments with a big data
(cca 350GB) LASSO problem with a billion variables. We are able to solve the problem using one
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of our methods on a large memory machine with 24 cores in 2 hours, pushing the di�erence between
the objective value at the starting iterate and the optimal point from 1022 down to 10−14.

2 Parallel Block Coordinate Descent Methods

In Section 2.1 we formalize the block structure of the problem, establish notation that will be used
in the rest of the paper and list assumptions. In Section 2.2 we propose two parallel block coordinate
descent methods and comment in some detail on the steps. Finally, in Section 2.3 we enumerate
some of the contributions/�ndings of this paper.

2.1 Block structure, notation and assumptions

The block structure of (1) is given by a decomposition of RN into n subspaces as follows. Let U ∈
RN×N be a column permutation of the N ×N identity matrix and further let U = [U1, U2, . . . , Un]
be a decomposition of U into n submatrices, with Ui being of size N ×Ni, where

∑
iNi = N .

Proposition 1 (Block decomposition). Any vector x ∈ RN can be written uniquely as

x =

n∑
i=1

Uix
(i), (5)

where x(i) ∈ Ri ≡ RNi . Moreover, x(i) = UTi x.

Proof. Noting that UUT =
∑

i UiU
T
i is the N ×N identity matrix, we have x =

∑
i UiU

T
i x. Let us

now show uniqueness. Assume that x =
∑

i Uix
(i)
1 =

∑
i Uix

(i)
2 , where x

(i)
1 , x

(i)
2 ∈ Ri. Since

UTj Ui =

{
Nj ×Nj identity matrix, if i = j,

Nj ×Ni zero matrix, otherwise,
(6)

for every j we get 0 = UTj (x− x) = UTj
∑

i Ui(x
(i)
1 − x

(i)
2 ) = x

(j)
1 − x

(j)
2 .

In view of the above proposition, from now on we write x(i) def
= UTi x ∈ Ri, and refer to x(i) as

the i-th block of x. The de�nition of partial separability in the introduction is with respect to these
blocks. For simplicity, we will sometimes write x = (x(1), . . . , x(n)).

Projection onto a set of blocks. For S ⊂ [n] and x ∈ RN we write

x[S]
def
=
∑
i∈S

Uix
(i). (7)

That is, given x ∈ RN , x[S] is the vector in RN whose blocks i ∈ S are identical to those of x,
but whose other blocks are zeroed out. In view of Proposition 1, we can equivalently de�ne x[S]

block-by-block as follows

(x[S])
(i) =

{
x(i), i ∈ S,
0 (∈ Ri), otherwise.

(8)
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Inner products. The standard Euclidean inner product in spaces RN and Ri, i ∈ [n], will be
denoted by 〈·, ·〉. Letting x, y ∈ RN , the relationship between these inner products is given by

〈x, y〉 (5)= 〈
n∑
j=1

Ujx
(j),

n∑
i=1

Uiy
(i)〉 =

n∑
j=1

n∑
i=1

〈UTi Ujx(j), y(i)〉 (6)=
n∑
i=1

〈x(i), y(i)〉.

For any w ∈ Rn and x, y ∈ RN we further de�ne

〈x, y〉w
def
=

n∑
i=1

wi〈x(i), y(i)〉. (9)

For vectors z = (z1, . . . , zn)T and w = (w1, . . . , wn)T we write w � z def
= (w1z1, . . . , wnzn)T .

Norms. Spaces Ri, i ∈ [n], are equipped with a pair of conjugate norms: ‖t‖(i) and ‖t‖∗(i)
def
=

max‖s‖(i)≤1〈s, t〉, t ∈ Ri. For w ∈ Rn
++, de�ne a pair of conjugate norms in RN by

‖x‖w =

[
n∑
i=1

wi‖x(i)‖2(i)

]1/2

, ‖y‖∗w
def
= max
‖x‖w≤1

〈y, x〉 =

[
n∑
i=1

w−1
i (‖y(i)‖∗(i))

2

]1/2

. (10)

Often we will use w = L
def
= (L1, L2, . . . , Ln)T , where the constants Li are de�ned below.

Smoothness of f . We assume throughout the paper that the gradient of f is block Lipschitz,
uniformly in x, with positive constants L1, . . . , Ln, i.e., that for all x ∈ RN , i ∈ [n] and t ∈ Ri,

‖∇if(x+ Uit)−∇if(x)‖∗(i) ≤ Li‖t‖(i), (11)

where ∇if(x)
def
= (∇f(x))(i) = UTi ∇f(x) ∈ Ri. An important consequence of (11) is the following

standard inequality [6]:
f(x+ Uit) ≤ f(x) + 〈∇if(x), t〉+ Li

2 ‖t‖
2
(i). (12)

Separability of Ω. We assume that Ω : RN → R ∪ {+∞} is (block) separable, i.e., that it can
be decomposed as follows:

Ω(x) =

n∑
i=1

Ωi(x
(i)), (13)

where the functions Ωi : Ri → R ∪ {+∞} are convex and closed.

Strong convexity. In one of our two complexity results (Theorem 20) we will assume that either
f or Ω (or both) is strongly convex. A function φ : RN → R ∪ {+∞} is strongly convex with
respect to the norm ‖ · ‖w with convexity parameter µφ(w) ≥ 0 if for all x, y ∈ domφ,

φ(y) ≥ φ(x) + 〈φ′(x), y − x〉+
µφ(w)

2 ‖y − x‖2w, (14)
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where φ′(x) is any subgradient of φ at x. The case with µφ(w) = 0 reduces to convexity. Strong
convexity of F may come from f or Ω (or both); we write µf (w) (resp. µΩ(w)) for the (strong)
convexity parameter of f (resp. Ω). It follows from (14) that

µF (w) ≥ µf (w) + µΩ(w). (15)

The following characterization of strong convexity will be useful. For all x, y ∈ domφ and
λ ∈ [0, 1],

φ(λx+ (1− λ)y) ≤ λφ(x) + (1− λ)φ(y)− µφ(w)λ(1−λ)
2 ‖x− y‖2w. (16)

It can be shown using (12) and (14) that µf (w) ≤ Li
wi
.

2.2 Algorithms

In this paper we develop and study two generic parallel coordinate descent methods. The main
method is PCDM1; PCDM2 is its �regularized� version which explicitly enforces monotonicity. As
we will see, both of these methods come in many variations, depending on how Step 3 is performed.

Algorithm 1 Parallel Coordinate Descent Method 1 (PCDM1)

1: Choose initial point x0 ∈ RN

2: for k = 0, 1, 2, . . . do
3: Randomly generate a set of blocks Sk ⊂ {1, 2, . . . , n}
4: xk+1 ← xk + (h(xk))[Sk]

5: end for

Algorithm 2 Parallel Coordinate Descent Method 2 (PCDM2)

1: Choose initial point x0 ∈ RN

2: for k = 0, 1, 2, . . . do
3: Randomly generate a set of blocks Sk ⊂ {1, 2, . . . , n}
4: xk+1 ← xk + (h(xk))[Sk]

5: If F (xk+1) > F (xk), then xk+1 ← xk
6: end for

Let us comment on the individual steps of the two methods.
Step 3. At the beginning of iteration k we pick a random set (Sk) of blocks to be updated (in

parallel) during that iteration; Sk is a realization of a random set-valued mapping Ŝ with values
in 2[n]. For brevity, in this paper we refer to such a mapping by the name sampling. We limit our
attention to uniform samplings, i.e., random sets having the following property: P(i ∈ Ŝ) = const
for all blocks i. That is, the probability that a block gets selected is the same for all blocks. Although
we give an iteration complexity result covering all such samplings (provided that each block has a
chance to be updated, i.e., const > 0), there are interesting subclasses of uniform samplings (such
as doubly uniform and nonoverlapping uniform samplings; see Section 3) for which we give better
results.

Step 4. For x ∈ RN we de�ne

h(x)
def
= arg min

h∈RN
Hβ,w(x, h), (17)
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where
Hβ,w(x, h)

def
= f(x) + 〈∇f(x), h〉+ β

2 ‖h‖
2
w + Ω(x+ h), (18)

and β > 0, w = (w1, . . . , wn)T ∈ Rn
++ are parameters of the method that we will comment on later.

Note that in view of (5), (10) and (13), Hβ,w(x, ·) is block separable;

Hβ,w(x, h) = f(x) +
n∑
i=1

{
〈∇if(x), h(i)〉+ βwi

2 ‖h
(i)‖2(i) + Ωi(x

(i) + h(i))
}
.

Consequently, we have h(x) = (h(1)(x), · · · , h(n)(x)) ∈ RN , where

h(i)(x) = arg min
t∈Ri

{〈∇if(x), t〉+ βwi
2 ‖t‖

2
(i) + Ωi(x

(i) + t)}.

We mentioned in the introduction that besides (block) separability, we require Ω to be �simple�.
By this we mean that the above optimization problem leading to h(i)(x) is �simple� (e.g., it has a
closed-form solution). Recall from (8) that (h(xk))[Sk] is the vector in RN identical to h(xk) except
for blocks i /∈ Sk, which are zeroed out. Hence, Step 4 of both methods can be written as follows:

In parallel for i ∈ Sk do: x
(i)
k+1 ← x

(i)
k + h(i)(xk).

Parameters β and w depend on f and Ŝ and stay constant throughout the algorithm. We
are not ready yet to explain why the update is computed via (17) and (18) because we need
technical tools, which will be developed in Section 3, to do so. Here it su�ces to say that the
parameters β and w come from a separable quadratic overapproximation of E[f(x+ h[Ŝ])], viewed

as a function of h ∈ RN . Since expectation is involved, we refer to this by the name Expected
Separable Overapproximation (ESO). This novel concept, developed in this paper, is one of the
main tools of our complexity analysis. Section 4 motivates and formalizes the concept, answers the
why question, and develops some basic ESO theory.

Section 5 is devoted to the computation of β and w for partially separable f and various special
classes of uniform samplings Ŝ. Typically we will have wi = Li, while β will depend on easily
computable properties of f and Ŝ. For example, if Ŝ is chosen as a subset of [n] of cardinality τ ,
with each subset chosen with the same probability (we say that Ŝ is τ -nice) then, assuming n > 1,

we may choose w = L and β = 1 + (ω−1)(τ−1)
n−1 , where ω is the degree of partial separability of f .

More generally, if Ŝ is any uniform sampling with the property |Ŝ| = τ with probability 1, then we
may choose w = L and β = min{ω, τ}. Note that in both cases w = L and that the latter β is
always larger than (or equal to) the former one. This means, as we will see in Section 6, that we
can give better complexity results for the former, more specialized, sampling. We analyze several
more options for Ŝ than the two just described, and compute parameters β and w that should be
used with them (for a summary, see Table 2).

Step 5. The reason why, besides PCDM1, we also consider PCDM2, is the following: in some
situations we are not able to analyze the iteration complexity of PCDM1 (non-strongly-convex F
where monotonicity of the method is not guaranteed by other means than by directly enforcing it
by inclusion of Step 5). Let us remark that this issue arises for general Ω only. It does not exist for
Ω = 0, Ω(·) = λ‖ · ‖1 and for Ω encoding simple constraints on individual blocks; in these cases one
does not need to consider PCDM2. Even in the case of general Ω we sometimes get monotonicity for
free, in which case there is no need to enforce it. Let us stress, however, that we do not recommend
implementing PCDM2 as this would introduce too much overhead; in our experience PCDM1 works
well even in cases when we can only analyze PCDM2.
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2.3 Contributions

Here is a list of what we believe are the most notable contributions of this paper (not in order of
signi�cance):

1. Problem generality. We give the �rst complexity analysis for a parallel coordinate descent
method for problem (1) in its full generality.

2. Relationship to existing results. To the best of our knowledge, there are just two papers
analyzing a parallel coordinate descent algorithm [1, 3]. In the �rst paper all blocks are of size
1, Ŝ corresponds to what we call in this paper a τ -nice sampling (i.e., all sets of τ coordinates
are updated at each iteration with equal probability) and hence their algorithm is somewhat
comparable to one of the many variants of our general method. While the analysis in [1]
works for a restricted range of values of τ , our results hold for all τ ∈ [n]. Moreover, the
authors consider a more restricted class of functions f and the special case Ω = λ‖x‖1, which
is simpler to analyze. Lastly, the theoretical speedups obtained in [1], when compared to the
serial CDM method, depend on a quantity that is hard to compute in big data settings (it
involves the computation of an eigenvalue of a huge-scale matrix). Our speedups are expressed
in terms of natural and easily computable quantity: the degree ω of partial separability of f .
The parallel CDM method of the second paper only allows all blocks to be updated at each
iteration. Unfortunately, the analysis in [3] is too coarse as it does not o�er any theoretical
speedup when compared to its serial counterpart.

3. Partial separability. We give the �rst analysis of a coordinate descent type method dealing
with a partially separable objective. In order to run the method, all we need to know about
f are the Lipschitz constants Li and the degree of partial separability ω. It is crucial that
these quantities are easily computable/predictable in the huge-scale setting. Indeed, if f(x) =
1
2‖Ax− b‖

2 and we choose all blocks to be of size 1, then Li is equal to the squared Euclidean
norm of the i-th column of A and ω is equal to the maximum over the cardinalities of (i.e.,
the number of nonzeros in) the rows of A.

4. Algorithm uni�cation. Depending on the choice of the block structure (as implied by the
choice of n and the matrices U1, . . . , Un) and the way blocks are selected at every iteration
(as given by the choice of Ŝ), our methods encode a range of known and new algorithms. For
example, in special cases, our method reduces to the serial coordinate descent method (Ni = 1
for all i and |Ŝ| = 1 with probability 1), serial block coordinate descent method (|Ŝ| = 1
with probability 1), PCDM with variable number of updates per iteration, distributed block
coordinate descent method (this will arise for a special choice of Ŝ, but will not discuss it
here as a follow up paper is currently being prepared), gradient descent method (for n = 1 or
|Ŝ| = n) and more. In particular, we give the �rst analysis of a method which �continuously�
interpolates between a serial coordinate descent method and the gradient method.

5. Expected Separable Overapproximation (ESO). En route to proving the iteration com-
plexity results for our algorithms, we develop a theory of deterministic and expected separable
overapproximation (Sections 4 and 5). We believe this is of independent interest; for instance,
methods based on ESO can be compared favorably to the Diagonal Quadratic Approximation
(DQA) approach used in the decomposition of stochastic optimization programs [14].
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6. Variable number of updates per iteration. We give the �rst analysis of a PCDM which
allows for a variable number of blocks to be updated throughout the iterations. This may be
useful in some settings such as when the problem is being solved in parallel by τ unreliable
processors each of which computes its update h(i)(xk) with probability pb and is busy/down
with probability 1− pb (read about binomial sampling in Section 3).

7. Parallelization speedup. We show theoretically (Section 6) and numerically (Section 7) that
PCDM accelerates on its serial counterpart for partially separable problems. The theoretical
parallelization speedup factors for several variants of our method (in case of a non-strongly
convex objective) are given in Table 3. For instance, in the case when all block are updated at
each iteration (we later refer to Ŝ having this property by the name fully parallel sampling),
the speedup factor is equal to n

ω . If the problem is separable (ω = 1), the speedup is equal to
n; if the problem is not separable (ω = n), there may be no speedup. For strongly convex F
the situation is even better; the details are given in Section 6.2.

8. Computations. We demonstrate that our method is able to solve a LASSO problem involving
a matrix with a billion columns and 2 billion rows on a large memory node with 24 cores in
2 hours (Section 7).

9. Code. The open source code with an e�cient implementation of the algorithm(s) developed
in this paper is published here: http://code.google.com/p/ac-dc/.

3 Block Samplings

In Step 3 of both PCDM1 and PCDM2 we choose a random set of blocks Sk to be updated at
the current iteration. Formally, Sk is a realization of a random set-valued mapping Ŝ with values
in 2[n]. For brevity, in this paper we refer to Ŝ by the name sampling. A sampling Ŝ is uniquely
characterized by the probability density function

P(S)
def
= P(Ŝ = S), S ⊂ [n]; (19)

that is, by assigning probabilities to all subsets of [n]. Further, we let p = (p1, . . . , pn)T , where

pi
def
= P(i ∈ Ŝ). (20)

In Section 3.1 we describe those samplings for which we analyze our methods. In Section 3.2 we
prove several technical results, which will be useful in the rest of the paper.

3.1 Uniform, Doubly Uniform and Nonoverlapping Uniform Samplings

A sampling is proper if pi > 0 for all blocks i. That is, from the perspective of PCDM, under
a proper sampling each block gets updated with a positive probability at each iteration. Clearly,
PCDM can not converge for a sampling that is not proper.

A sampling Ŝ is uniform if all blocks get updated with the same probability, i.e., if pi = const.

We show in (32) that, necessarily, pi = E[|Ŝ|]
n . Further, we say Ŝ is nil if P(∅) = 1. Note that a

uniform sampling is proper if and only if it is not nil.
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All our iteration complexity results in this paper are for PCDM used with a proper uniform
sampling (see Theorems 19 and 20) for which we can compute β and w giving rise to (18). We
give a general complexity result covering all proper uniform samplings (Theorem 12) as well as
re�ned results for two special subclasses thereof: doubly uniform samplings (Theorem 15) and
nonoverlapping uniform samplings (Theorem 13). We will now give the de�nitions:

1. Doubly Uniform (DU) samplings. A DU sampling is one which generates all sets of equal
cardinality with equal probability. That is, P(S′) = P(S′′) whenever |S′| = |S′′|. The name
comes from the fact that this de�nition postulates a di�erent uniformity property, �standard�
uniformity is a consequence. Indeed, let us show that a DU sampling is necessarily uniform.
Let qj = P(|Ŝ| = j) for j = 0, 1, . . . , n and note that from the de�nition we know that
whenever S is of cardinality j, we have P(S) = qj/

(
n
j

)
. Finally, using this we obtain

pi =
∑
S:i∈S

P(S) =

n∑
j=1

∑
S:i∈S
|S|=j

P(S) =

n∑
j=1

∑
S:i∈S
|S|=j

qj

(nj)
=

n∑
j=1

(n−1
j−1)
(nj)

qj = 1
n

n∑
j=1

qjj = E[|Ŝ|]
n .

It is clear that each DU sampling is uniquely characterized by the vector of probabilities q;
its density function is given by

P(S) =
q|S|(
n
|S|
) , S ⊆ [n]. (21)

2. Nonoverlapping Uniform (NU) samplings. A NU sampling is one which is uniform and
which assigns positive probabilities only to sets forming a partition of [n]. Let S1, S2, . . . , Sl be
a partition of [n], with |Sj | > 0 for all j. The density function of a NU sampling corresponding
to this partition is given by

P(S) =

{
1
l , if S ∈ {S1, S2, . . . , Sl},
0, otherwise.

(22)

Note that E[|Ŝ|] = n
l .

Let us now describe several interesting special cases of DU and NU samplings:

3. Nice sampling. Fix 1 ≤ τ ≤ n. A τ -nice sampling is a DU sampling with qτ = 1.

Interpretation: There are τ processors/threads/cores available. At the beginning of each
iteration we choose a set of blocks using a τ -nice sampling (i.e., each subset of τ blocks is
chosen with the same probability), and assign each block to a dedicated processor/thread/core.
Processor assigned with block i would compute and apply the update h(i)(xk). This is the
sampling we use in our computational experiments.

4. Independent sampling. Fix 1 ≤ τ ≤ n. A τ -independent sampling is a DU sampling with

qk =

{(
n
k

)
ck, k = 1, 2, . . . , τ,

0, k = τ + 1, . . . , n,

11



where c1 =
(

1
n

)τ
and ck =

(
k
n

)τ −∑k−1
i=1

(
k
i

)
ci for k ≥ 2.

Interpretation: There are τ processors/threads/cores available. Each processor chooses one
of the n blocks, uniformly at random and independently of the other processors. It turns out
that the set Ŝ of blocks selected this way is DU with q as given above. Since in one parallel
iteration of our methods each block in Ŝ is updated exactly once, this means that if two or
more processors pick the same block, all but one will be idle. On the other hand, this sampling
can be generated extremely easily and in parallel! For τ � n this sampling is a good (and
fast) approximation of the τ -nice sampling. For instance, for n = 103 and τ = 8 we have
q8 = 0.9723, q7 = 0.0274, q6 = 0.0003 and qk ≈ 0 for k = 1, . . . , 5.

5. Binomial sampling. Fix 1 ≤ τ ≤ n and 0 < pb ≤ 1. A (τ, pb)-binomial sampling is de�ned
as a DU sampling with

qk =

(
τ

k

)
pkb (1− pb)k, k = 0, 1, . . . , τ. (23)

Notice that E[|Ŝ|] = τpb and E[|Ŝ|2] = τpb(1 + τpb − pb).
Interpretation: Consider the following situation with independent equally unreliable processors.
We have τ processors, each of which is at any given moment available with probability pb and
busy with probability 1− pb, independently of the availability of the other processors. Hence,
the number of available processors (and hence blocks that can be updated in parallel) at each
iteration is a binomial random variable with parameters τ and pb. That is, the number of
available processors is equal to k with probability qk.

� Case 1 (explicit selection of blocks): We learn that k processors are available at the
beginning of each iteration. Subsequently, we choose k blocks using a k-nice sampling
and �assign one block� to each of the k available processors.

� Case 2 (implicit selection of blocks): We choose τ blocks using a τ -nice sampling and
assign one to each of the τ processors (we do not know which will be available at the
beginning of the iteration). With probability qk, k of these will send their updates. It is
easy to check that the resulting e�ective sampling of blocks is (τ, pb)-binomial.

6. Serial sampling. This is a DU sampling with q1 = 1. Also, this is a NU sampling with l = n
and Sj = {j} for j = 1, 2, . . . , l. That is, at each iteration we update a single block, uniformly
at random. This was studied in [13].

7. Fully parallel sampling. This is a DU sampling with qn = 1. Also, this is a NU sampling
with l = 1 and S1 = [n]. That is, at each iteration we update all blocks.

The following simple result says that the intersection between the class of DU and NU samplings
is very thin. A sampling is called vacuous if P(∅) > 0.

Proposition 2. There are precisely two nonvacuous samplings which are both DU and NU: i) the
serial sampling and ii) the fully parallel sampling.

Proof. Assume Ŝ is nonvacuous, NU and DU. Since Ŝ is nonvacuous, P(Ŝ = ∅) = 0. Let S ⊂ [n]
be any set for which P(Ŝ = S) > 0. If 1 < |S| < n, then there exists S′ 6= S of the same

12



cardinality as S having a nonempty intersection with S. Since Ŝ is doubly uniform, we must have
P(Ŝ = S′) = P(Ŝ = S′) > 0. However, this contradicts the fact that Ŝ is non-overlapping. Hence,
Ŝ can only generate sets of cardinalities 1 or n with positive probability, but not both. One option
leads to the fully parallel sampling, the other one leads to the serial sampling.

3.2 Technical results

For a given sampling Ŝ and i, j ∈ [n] we let

pij
def
= P(i ∈ Ŝ, j ∈ Ŝ) =

∑
S:{i,j}⊂S

P(S). (24)

The following simple result has several consequences which will be used throughout the paper.

Lemma 3 (Sum over a random index set). Let ∅ 6= J ⊂ [n] and Ŝ be any sampling. If θi, i ∈ [n],
and θij, for (i, j) ∈ [n]× [n] are real constants, then2

E

 ∑
i∈J∩Ŝ

θi

 =
∑
i∈J

piθi,

E

 ∑
i∈J∩Ŝ

θi | |J ∩ Ŝ| = k

 =
∑
i∈J

P(i ∈ Ŝ | |J ∩ Ŝ| = k)θi, (25)

E

 ∑
i∈J∩Ŝ

∑
j∈J∩Ŝ

θij

 =
∑
i∈J

∑
j∈J

pijθij . (26)

Proof. We prove the �rst statement, proof of the remaining statements is essentially identical:

E

 ∑
i∈J∩Ŝ

θi

 (19)
=

∑
S⊂[n]

( ∑
i∈J∩S

θi

)
P(S) =

∑
i∈J

∑
S:i∈S

θiP(S) =
∑
i∈J

θi
∑
S:i∈S

P(S) =
∑
i∈J

piθi.

The consequences are summarized in the next theorem and the discussion that follows.

Theorem 4. Let ∅ 6= J ⊂ [n] and Ŝ be an arbitrary sampling. Further, let a, h ∈ RN , w ∈ Rn
+ and

let g be a block separable function, i.e., g(x) =
∑

i gi(x
(i)). Then

E
[
|J ∩ Ŝ|

]
=

∑
i∈J

pi, (27)

E
[
|J ∩ Ŝ|2

]
=

∑
i∈J

∑
j∈J

pij , (28)

E
[
〈a, h[Ŝ]〉w

]
= 〈a, h〉p�w, (29)

E
[
‖h[Ŝ]‖

2
w

]
= ‖h‖2p�w, (30)

E
[
g(x+ h[Ŝ])

]
=

n∑
i=1

[
pigi(x

(i) + h(i)) + (1− pi)gi(x(i))
]
. (31)

2Sum over an empty index set will, for convenience, be de�ned to be zero.
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Moreover, the matrix P
def
= (pij) is positive semide�nite.

Proof. Noting that |J ∩ Ŝ| =
∑

i∈J∩Ŝ 1, |J ∩ Ŝ|2 = (
∑

i∈J∩Ŝ 1)2 =
∑

i∈J∩Ŝ
∑

j∈J∩Ŝ 1, 〈a, h[Ŝ]〉w =∑
i∈Ŝ wi〈a

(i), h(i)〉, ‖h[Ŝ]‖
2
w =

∑
i∈Ŝ wi‖h

(i)‖2(i) and

g(x+ h[Ŝ]) =
∑
i∈Ŝ

gi(x
(i) + h(i)) +

∑
i/∈Ŝ

gi(x
(i)) =

∑
i∈Ŝ

gi(x
(i) + h(i)) +

n∑
i=1

gi(x
(i))−

∑
i∈Ŝ

gi(x
(i)),

all �ve identities follow directly by applying Lemma 3. Finally, for any θ = (θ1, . . . , θn)T ∈ Rn,

θTPθ =
n∑
i=1

n∑
j=1

pijθiθj
(26)
= E[(

∑
i∈Ŝ

θi)
2] ≥ 0.

The above results hold for arbitrary samplings. Let us specialize them, in order of decreasing
generality, to uniform, doubly uniform and nice samplings.

• Uniform samplings. If Ŝ is uniform, then from (27) using J = [n] we get

pi =
E[|Ŝ|]
n , i ∈ [n]. (32)

Plugging (32) into (27), (29), (30) and (31) yields

E
[
|J ∩ Ŝ|

]
= |J |

n E[|Ŝ|], (33)

E
[
〈a, h[Ŝ]〉w

]
=

E[|Ŝ|]
n 〈a, h〉w, (34)

E
[
‖h[Ŝ]‖

2
w

]
=

E[|Ŝ|]
n ‖h‖2w, (35)

E
[
g(x+ h[Ŝ])

]
= E[|Ŝ|]

n g(x+ h) +
(

1− E[|Ŝ|]
n

)
g(x). (36)

• Doubly uniform samplings. For doubly uniform Ŝ, pij is constant for i 6= j:

pij =

{
E[|Ŝ|2−|Ŝ|]
n(n−1) n > 1,

0 n = 1.
(37)

Indeed (consider n > 1, case n = 1 is trivial), this follows from

pij =
n∑
k=1

P({i, j} ⊂ Ŝ | |Ŝ| = k)P(|Ŝ| = k) =
n∑
k=1

k(k−1)
n(n−1)P(|Ŝ| = k).

Substituting (37) and (29) into (28) then gives

E[|J ∩ Ŝ|2] = (|J |2 − |J |) E[|Ŝ|2−|Ŝ|]
nmax{1,n−1} + |J | |Ŝ|n . (38)

14



• Nice samplings. Finally, if Ŝ is τ -nice (and τ 6= 0), then E[|Ŝ|] = τ and E[|Ŝ|2] = τ2, which
used in (38) gives

E[|J ∩ Ŝ|2] = |J |τ
n

(
1 + (|J |−1)(τ−1)

max{1,n−1}

)
. (39)

Moreover, assume that P(|J ∩ Ŝ| = k) 6= 0 (this happens precisely when 0 ≤ k ≤ |J | and
k ≤ τ ≤ n− |J |+ k). Then for all i ∈ J ,

P(i ∈ Ŝ | |J ∩ Ŝ| = k) =

(|J |−1
k−1

)(n−|J |
τ−k

)(|J |
k

)(n−|J |
τ−k

) =
k

|J |
.

Substituting this into (25) yields

E

 ∑
i∈J∩Ŝ

θi | |J ∩ Ŝ| = k

 = k
|J |

∑
i∈J

θi. (40)

4 Expected Separable Overapproximation

Recall that given xk, in PCDM1 the next iterate is the random vector xk+1 = xk + h[Ŝ] for a

particular choice of h ∈ RN . Further recall that in PCDM2,

xk+1 =

{
xk + h[Ŝ], if F (xk + h[Ŝ]) ≤ F (xk),

xk, otherwise,

again for a particular choice of h. While in Section 2 we mentioned how h is computed, i.e., that h
is the minimizer of Hβ,w(x, ·) (see (17) and (18)), we did not explain why is h computed this way.
The reason for this is that the tools needed for this were not yet developed at that point (as we will
see, some results from Section 3 are needed). In this section we give an answer to this why question.

Given xk ∈ RN , after one step of PCDM1 performed with update h we get E[F (xk+1) | xk] =
E[F (xk + h[Ŝ]) | xk]. On the the other hand, after one step of PCDM2 we have

E[F (xk+1) | xk] = E[min{F (xk + h[Ŝ]), F (xk)} | xk] ≤ min{E[F (xk + h[Ŝ]) | xk], F (xk)}.

So, for both PCDM1 and PCDM2 the following estimate holds,

E[F (xk+1) | xk] ≤ E[F (xk + h[Ŝ]) | xk]. (41)

A good choice for h to be used in the algorithms would be one minimizing the right hand side of
inequality (41). At the same time, we would like the minimization process to be decomposable
so that the updates h(i), i ∈ Ŝ, could be computed in parallel. However, the problem of �nding
such h is intractable in general even if we do not require parallelizability. Instead, we propose to
construct/compute a �simple� separable overapproximation of the right-hand side of (41). Since
the overapproximation will be separable, parallelizability is guaranteed; �simplicity� means that the
updates h(i) can be computed easily (e.g., in closed form).

From now on we replace, for simplicity and w.l.o.g., the random vector xk by a �xed deterministic
vector x ∈ RN . We can thus remove conditioning in (41) and instead study the quantity E[F (x+
h[Ŝ])]. Further, �x h ∈ RN . Note that if we can �nd β > 0 and w ∈ Rn

++ such that

E
[
f
(
x+ h[Ŝ]

)]
≤ f(x) + E[|Ŝ|]

n

(
〈∇f(x), h〉+ β

2 ‖h‖
2
w

)
, (42)
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we indeed �nd a simple separable overapproximation of E[F (x+ h[Ŝ])]:

E[F (x+ h[Ŝ])]
(1)
= E[f(x+ h[Ŝ]) + Ω(x+ h[Ŝ])]

(42),(36)

≤ f(x) + E[|Ŝ|]
n

(
〈∇f(x), h〉+ β

2 ‖h‖
2
w

)
+
(

1− E[|Ŝ|]
n

)
Ω(x) + E[|Ŝ|]

n Ω(x+ h)

=
(

1− E[|Ŝ|]
n

)
F (x) + E[|Ŝ|]

n Hβ,w(x, h), (43)

where we recall from (18) that Hβ,w(x, h) = f(x) + 〈∇f(x), h〉+ β
2 ‖h‖

2
w + Ω(x+ h).

That is, (43) says that the expected objective value after one parallel step of our methods, if
block i ∈ Ŝ is updated by h(i), is bounded above by a convex combination of F (x) and Hβ,w(x, h).
The natural choice of h is to set

h(x) = arg min
h∈RN

Hβ,w(x, h). (44)

Note that this is precisely the choice we make in our methods. Since Hβ,w(x, 0) = F (x), both
PCDM1 and PCDM2 are monotonic in expectation.

The above discussion leads to the following de�nition.

De�nition 5 (Expected Separable Overapproximation (ESO)). Let β > 0, w ∈ Rn
++ and let Ŝ be

a proper uniform sampling. We say that f : RN → R admits a (β,w)-ESO with respect to Ŝ if
inequality (42) holds for all x, h ∈ RN . For simplicity, we write (f, Ŝ) ∼ ESO(β,w).

A few remarks:

1. In�ation. If (f, Ŝ) ∼ ESO(β,w), then for β′ ≥ β and w′ ≥ w, (f, Ŝ) ∼ ESO(β′, w′).

2. Reshu�ing. Since for any c > 0 we have ‖h‖2cw = c‖h‖2w, one can �shu�e� constants between
β and w as follows:

(f, Ŝ) ∼ ESO(cβ, w) ⇔ (f, Ŝ) ∼ ESO(β, cw), c > 0. (45)

3. Strong convexity. If (f, Ŝ) ∼ ESO(β,w), then

β ≥ µf (w). (46)

Indeed, it su�ces to take expectation in (14) with y replaced by x + h[Ŝ] and compare the

resulting inequality with (42) (this gives β‖h‖2w ≥ µf (w)‖h‖2w, which must hold for all h).

Recall that Step 5 of PCDM2 was introduced so as to explicitly enforce monotonicity into the
method as in some situations, as we will see in Section 6, we can only analyze a monotonic algo-
rithm. However, sometimes even PCDM1 behaves monotonically (without enforcing this behavior
externally as in PCDM2). The following de�nition captures this.

De�nition 6 (Monotonic ESO). Assume (f, Ŝ) ∼ ESO(β,w) and let h(x) be as in (44). We say
that the ESO is monotonic if F (x+ (h(x))[Ŝ]) ≤ F (x) for all x ∈ domF .
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4.1 Deterministic Separable Overapproximation (DSO) of Partially Separable
Functions

The following theorem will be useful in deriving ESO for uniform samplings (Section 5.1) and
nonoverlapping uniform samplings (Section 5.2). It will also be useful in establishing monotonicity
of some ESOs (Theorems 12 and 13).

Theorem 7 (DSO). Assume f is partially separable (i.e., it can be written in the form (2)). Letting

Supp(h)
def
= {i ∈ [n] : h(i) 6= 0}, for all x, h ∈ RN we have

f(x+ h) ≤ f(x) + 〈∇f(x), h〉+
maxJ∈J |J ∩ Supp(h)|

2
‖h‖2L. (47)

Proof. Let us �x x and de�ne φ(h)
def
= f(x + h) − f(x) − 〈∇f(x), h〉. Fixing h, we need to show

that φ(h) ≤ θ
2‖h‖

2
L for θ = maxJ∈J θ

J , where θJ
def
= |J ∩ Supp(h)|. One can de�ne functions φJ in

an analogous fashion from the constituent functions fJ , which satisfy

φ(h) =
∑
J∈J

φJ(h), (48)

φJ(0) = 0, J ∈ J . (49)

Note that (12) can be written as

φ(Uih
(i)) ≤ Li

2 ‖h
(i)‖2(i), i = 1, 2, . . . , n. (50)

Now, since φJ depends on the intersection of J and the support of its argument only, we have

φ(h)
(48)
=
∑
J∈J

φJ(h) =
∑
J∈J

φJ

(
n∑
i=1

Uih
(i)

)
=
∑
J∈J

φJ

 ∑
i∈J∩Supp(h)

Uih
(i)

 . (51)

The argument in the last expression can be written as a convex combination of 1 + θJ vectors:
the zero vector (with weight θ−θJ

θ ) and the θJ vectors {θUih(i) : i ∈ J ∩ Supp(h)} (with weights 1
θ ):∑

i∈J∩Supp(h)

Uih
(i) = θ−θJ

θ × 0 + 1
θ ×

∑
i∈J∩Supp(h)

θUih
(i). (52)

Finally, we plug (52) into (51) and use convexity and some simple algebra:

φ(h) ≤
∑
J∈J

 θ−θJ
θ φJ(0) + 1

θ

∑
i∈J∩Supp(h)

φJ(θUih
(i))

 (49)
= 1

θ

∑
J∈J

∑
i∈J∩Supp(h)

φJ(θUih
(i))

= 1
θ

∑
J∈J

n∑
i=1

φJ(θUih
(i)) = 1

θ

n∑
i=1

∑
J∈J

φJ(θUih
(i))

(48)
= 1

θ

n∑
i=1

φ(θUih
(i))

(50)

≤ 1
θ

n∑
i=1

Li
2 ‖θh

(i)‖2(i) = θ
2‖h‖

2
L.

Besides the usefulness of the above result in deriving ESO inequalities, it is interesting on its
own for the following reasons.
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1. Block Lipschitz continuity of ∇f . The DSO inequality (47) is a generalization of (12)
since (12) can be recovered from (47) by choosing h with Supp(h) = {i} for i ∈ [n].

2. Global Lipschitz continuity of ∇f . The DSO inequality also says that the gradient of f
is Lipschitz with Lipschitz constant ω with respect to the norm ‖ · ‖L:

f(x+ h) ≤ f(x) + 〈∇f(x), h〉+ ω
2 ‖h‖

2
L. (53)

Indeed, this follows from (47) via maxJ∈J |J ∩ Supp(h)| ≤ maxJ∈J |J | = ω. For ω = n this
has been shown in [7]; our result for partially separable functions appears to be new.

3. Tightness of the global Lipschitz constant. The Lipschitz constant ω is �tight� in the
following sense: there are functions for which ω cannot be replaced in (53) by any smaller
number. We will show this on a simple example. Let f(x) = 1

2‖Ax‖
2 with A ∈ Rm×n (blocks

are of size 1). Note that we can write f(x + h) = f(x) + 〈∇f(x), h〉 + 1
2h

TATAh, and that
L = (L1, . . . , Ln) = diag(ATA). Let D = Diag(L). We need to argue that there exists A for

which σ
def
= maxh6=0

hTATAh
‖h‖2L

= ω. Since we know that σ ≤ ω (otherwise (53) would not hold),

all we need to show is that there is A and h for which

hTATAh = ωhTDh. (54)

Since f(x) =
∑m

i=1(ATj x)2, where Aj is the j-th row of A, we assume that each row of A has
at most ω nonzeros (i.e., f is partially separable of degree ω). Let us pick A with the following
further properties: a) A is a 0-1 matrix, b) all rows of A have exactly ω ones, c) all columns
of A have exactly the same number (k) of ones. Immediate consequences: Li = k for all i,
D = kIn and ωm = kn. If we let em be the m×1 vector of all ones and en be the n×1 vector
of all ones, and set h = k−1/2en, then

hTATAh = 1
ke
T
nA

TAen = 1
k (ωem)T (ωem) = ω2m

k = ωn = ω 1
ke
T
nkInen = ωhTDh,

establishing (54). Using similar techniques one can easily prove the following more general
result: Tightness also occurs for matrices A which in each row contain ω identical nonzero
elements (but which can vary from row to row).

4.2 ESO for a convex combination of samplings

Let Ŝ1, Ŝ2, . . . , Ŝm be a collection of samplings and let q ∈ Rm be a probability vector. By
∑

j qjŜj

we denote the sampling Ŝ given by

P
(
Ŝ = S

)
=

m∑
j=1

qjP(Ŝj = S). (55)

This procedure allows us to build new samplings from existing ones. A natural interpretation of Ŝ
is that it arises from a two stage process as follows. Generating a set via Ŝ is equivalent to �rst
choosing j with probability qj , and then generating a set via Ŝj .

Lemma 8. Let Ŝ1, Ŝ2, . . . , Ŝm be arbitrary samplings, q ∈ Rm a probability vector and κ : 2[n] → R
any function mapping subsets of [n] to reals. If we let Ŝ =

∑
j qjŜj, then
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(i) E[κ(Ŝ)] =
∑m

j=1 qjE[κ(Ŝj)],

(ii) E[|Ŝ|] =
∑m

j=1 qjE[|Ŝj |],

(iii) P(i ∈ Ŝ) =
∑m

j=1 qjP(i ∈ Ŝj), for any i = 1, 2, . . . , n,

(iv) If Ŝ1, . . . , Ŝm are uniform (resp. doubly uniform), so is Ŝ.

Proof. Statement (i) follows by writing E[κ(Ŝ)] as

∑
S

P(Ŝ = S)κ(S)
(55)
=
∑
S

m∑
j=1

qjP(Ŝj = S)κ(S) =
m∑
j=1

qj
∑
S

P(Ŝj = S)κ(S) =
m∑
j=1

qjE[κ(Ŝj)].

Statement (ii) follows from (i) by choosing κ(S) = |S|, and (iii) follows from (i) by choosing κ as
follows: κ(S) = 1 if i ∈ S and κ(S) = 0 otherwise. Finally, if the samplings Ŝj are uniform, from
(32) we know that P(i ∈ Ŝj) = E[|Ŝj |]/n for all i and j. Plugging this into identity (iii) shows
that P(i ∈ Ŝ) is independent of i, which shows that Ŝ is uniform. Now assume that Ŝj are doubly
uniform. Fixing arbitrary τ ∈ {0} ∪ [n], for every S ⊂ [n] such that |S| = τ we have

P(Ŝ = S)
(55)
=

m∑
j=1

qjP(Ŝj = S) =
m∑
j=1

qj
P(|Ŝj | = τ)(

n
τ

) .

As the last expression depends on S via |S| only, Ŝ is doubly uniform.

Remarks:

1. If we �x S ⊂ [n] and de�ne k(S′) = 1 if S′ = S and k(S′) = 0 otherwise, then statement (i)
of Theorem 8 reduces to (55).

2. All samplings arise as a combination of elementary samplings, i.e., samplings whose all weight
is on one set only. Indeed, let Ŝ be an arbitrary sampling. For all subsets Sj of [n] de�ne Ŝj
by P(Ŝj = Sj) = 1 and let qj = P(Ŝ = Sj). Then clearly, Ŝ =

∑
j qjŜj .

3. All doubly uniform samplings arise as convex combinations of nice samplings.

Often it is easier to establish ESO for a simple class of samplings (e.g., nice samplings) and then
use it to obtain an ESO for a more complicated class (e.g., doubly uniform samplings as they arise
as convex combinations of nice samplings). The following result is helpful in this regard.

Theorem 9 (Convex Combination of Uniform Samplings). Let Ŝ1, . . . , Ŝm be uniform samplings
satisfying (f, Ŝj) ∼ ESO(βj , wj) and let q ∈ Rm be a probability vector. If

∑
j qjŜj is not nil, thenf, m∑

j=1

qjŜj

 ∼ ESO
 1∑m

j=1 qjE[|Ŝj |]
,
m∑
j=1

qjE[|Ŝj |]βjwj

 .
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Proof. First note that from part (iv) of Lemma 8 we know that Ŝ
def
=
∑

j qjŜj is uniform and hence
it makes sense to speak about ESO involving this sampling. Next, we can write

E
[
f(x+ h[Ŝ])

]
=

∑
S

P(Ŝ = S)f(x+ h[S])
(55)
=
∑
S

∑
j

qjP(Ŝj = S)f(x+ h[S])

=
∑
j

qj
∑
S

P(Ŝj = S)f(x+ h[S]) =
∑
j

qjE
[
f(x+ h[Ŝj ]

)
]
.

It now remains to use (42) and part (ii) of Lemma 8:

m∑
j=1

qjE
[
f(x+ h[Ŝj ]

)
] (42)

≤
m∑
j=1

qj

(
f(x) +

E[|Ŝj |]
n

(
〈∇f(x), h〉+

βj
2 ‖h‖

2
wj

))
= f(x) +

∑
j qjE[|Ŝj |]

n 〈∇f(x), h〉+ 1
2n

∑
j

qjE[|Ŝj |]βj‖h‖2wj

(Lemma 8 (ii))
= f(x) + E[|Ŝ|]

n

(
〈∇f(x), h〉+

∑
j qjE[|Ŝj |]βj‖h‖2wj
2
∑
j qjE[|Ŝj |]

)
= f(x) + E[|Ŝ|]

n

(
〈∇f(x), h〉+ 1

2
∑
j qjE[|Ŝj |]

‖h‖2w
)
,

where w =
∑

j qjE[|Ŝj |]βjwj . In the third step we have also used the fact that E[|Ŝ|] > 0 which

follows from the assumption that Ŝ is not nil.

4.3 ESO for a conic combination of functions

We now establish an ESO for a conic combination of functions each of which is already equipped
with an ESO. It o�ers a complementary result to Theorem 9.

Theorem 10 (Conic Combination of Functions). If (fj , Ŝ) ∼ ESO(βj , wj) for j = 1, . . . ,m, then
for any c1, . . . , cm ≥ 0 we have m∑

j=1

cjfj , Ŝ

 ∼ ESO
1,

m∑
j=1

cjβjwj

 .

Proof. Letting f =
∑

j cjfj , we get

E

∑
j

cjfj

(
x+ h[Ŝ]

) =
∑
j

cj E
[
fj

(
x+ h[Ŝ]

)]
≤

∑
j

cj

(
fj(x) + E[|Ŝ|]

n

(
〈∇fj(x), h〉+

βj
2 ‖h‖

2
wj

))

=
∑
j

cjfj(x) + E[|Ŝ|]
n

∑
j

cj〈∇fj(x), h〉+
∑
j

cjβj
2 ‖h‖

2
wj


= f(x) + E[|Ŝ|]

n

(
〈∇f(x), h〉+ 1

2‖h‖
2∑
j cjβjwj

)
.
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5 Expected Separable Overapproximation (ESO) of Partially Sep-
arable Functions

Here we derive ESO inequalities for partially separable smooth functions f and (proper) uniform
(Section 5.1), nonoverlapping uniform (Section 5.2), nice (Section 5.3) and doubly uniform (Sec-
tion 5.4) samplings.

5.1 Uniform samplings

Consider an arbitrary proper sampling Ŝ and let ν = (ν1, . . . , νn)T be de�ned by

νi
def
= E

[
min{ω, |Ŝ|} | i ∈ Ŝ

]
= 1

pi

∑
S:i∈S

P(S) min{ω, |S|}, i ∈ [n].

Lemma 11. If Ŝ is proper, then

E
[
f(x+ h[Ŝ])

]
≤ f(x) + 〈∇f(x), h〉p + 1

2‖h‖
2
p�ν�L. (56)

Proof. Let us use Theorem 7 with h replaced by h[Ŝ]. Note that maxJ∈J |J ∩ Supp(h[Ŝ])| ≤
maxJ∈J |J ∩ Ŝ| ≤ min{ω, |Ŝ|}. Taking expectations of both sides of (47) we therefore get

E
[
f(x+ h[Ŝ])

] (47)

≤ f(x) + E
[
〈∇f(x), h[Ŝ]〉

]
+ 1

2 E
[
min{ω, |Ŝ|}‖h[Ŝ]‖

2
L

]
(29)
= f(x) + 〈∇f(x), h〉p + 1

2 E
[
min{ω, |Ŝ|}‖h[Ŝ]‖

2
L

]
. (57)

It remains to bound the last term in the expression above. Letting θi = Li‖h(i)‖2(i), we have

E
[
min{ω, |Ŝ|}‖h[Ŝ]‖

2
L

]
= E

∑
i∈Ŝ

min{ω, |Ŝ|}Li‖h(i)‖2(i)

 =
∑
S⊂[n]

P(S)
∑
i∈S

min{ω, |S|}θi

=
n∑
i=1

θi
∑
S:i∈S

min{ω, |S|}P(S) =
n∑
i=1

θipiE
[
min{ω, |Ŝ|} | i ∈ Ŝ

]
=

n∑
i=1

θipiνi = ‖h‖2p�ν�L.

(58)

The above lemma will now be used to establish ESO for arbitrary (proper) uniform samplings.

Theorem 12. If Ŝ is proper and uniform, then

(f, Ŝ) ∼ ESO(1, ν � L). (59)

If, in addition, P(|Ŝ| = τ) = 1 (we say that Ŝ is τ -uniform), then

(f, Ŝ) ∼ ESO(min{ω, τ}, L). (60)

Moreover, ESO (60) is monotonic.
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Proof. First, (59) follows from (56) since for a uniform sampling one has pi = E[|Ŝ|]/n for all i.
If P(|Ŝ| = τ) = 1, we get νi = min{ω, τ} for all i; (60) therefore follows from (59). Let us now
establish monotonicity. Using the deterministic separable overapproximation (47) with h = h[Ŝ],

F (x+ h[Ŝ]) ≤ f(x) + 〈∇f(x), h[Ŝ]〉+ max
J∈J

|J∩Ŝ|
2 ‖h[Ŝ]‖

2
L + Ω(x+ h[Ŝ])

≤ f(x) + 〈∇f(x), h[Ŝ]〉+ β
2 ‖h[Ŝ]‖

2
w + Ω(x+ h[Ŝ]) (61)

= f(x) +
∑
i∈Ŝ

(
〈∇f(x), Uih

(i)〉+ βwi
2 ‖h

(i)‖2(i) + Ωi(x
(i) + h(i))

)
︸ ︷︷ ︸

def
= κi(h(i))

+
∑
i/∈Ŝ

Ωi(x
(i)). (62)

Now let h(x) = arg minhHβ,w(x, h) and recall that

Hβ,w(x, h) = f(x) + 〈∇f(x), h〉+ β
2 ‖h‖

2
w + Ω(x+ h)

= f(x) +

n∑
i=1

(
〈∇f(x), Uih

(i)〉+ βwi
2 ‖h

(i)‖2(i) + Ωi(x
(i) + h(i))

)
= f(x) +

n∑
i=1

κi(h
(i)).

So, by de�nition, (h(x))(i) minimizes κi(t) and hence, (h(x))[Ŝ] (recall (7)) minimizes the upper

bound (62). In particular, (h(x))[Ŝ] is better than a nil update, which immediately gives F (x +

(h(x))[Ŝ]) ≤ f(x) +
∑

i∈Ŝ κi(0) +
∑

i/∈Ŝ Ωi(x
(i)) = F (x).

Besides establishing an ESO result, we have just shown that, in the case of τ -uniform samplings
with a conservative estimate for β, PCDM1 is monotonic, i.e., F (xk+1) ≤ F (xk). In particular,
PCDM1 and PCDM2 coincide. We call the estimate β = min{ω, τ} �conservative� because it can
be improved (made smaller) in special cases; e.g., for the τ -nice sampling. Indeed, Theorem 14

establishes an ESO for the τ -nice sampling with the same w (w = L), but with β = 1 + (ω−1)(τ−1)
n−1 ,

which is better (and can be much better than) min{ω, τ}. Other things equal, smaller β directly
translates into better complexity. The price for the small β in the case of the τ -nice sampling
is the loss of monotonicity. This is not a problem for strongly convex objective, but for merely
convex objective this is an issue as the analysis techniques we developed are only applicable to the
monotonic method PCDM2 (see Theorem 19).

5.2 Nonoverlapping uniform samplings

Let Ŝ be a (proper) nonoverlapping uniform sampling as de�ned in (22). If i ∈ Sj , for some
j ∈ {1, 2, . . . , l}, de�ne

γi
def
= max

J∈J
|J ∩ Sj |, (63)

and let γ = (γ1, . . . , γn)T .
Note that, for example, if Ŝ is the serial uniform sampling, then l = n and Sj = {j} for

j = 1, 2, . . . , l, whence γi = 1 for all i ∈ [n]. For the fully parallel sampling we have l = 1 and
S1 = {1, 2, . . . , n}, whence γi = ω for all i ∈ [n].

Theorem 13. If Ŝ a nonoverlapping uniform sampling, then

(f, Ŝ) ∼ ESO(1, γ � L). (64)

Moreover, this ESO is monotonic.
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Proof. By Theorem 7, used with h replaced by h[Sj ] for j = 1, 2, . . . , l, we get

f(x+ h[Sj ]) ≤ f(x) + 〈∇f(x), h[Sj ]〉+ max
J∈J

|J∩Sj |
2 ‖h[Sj ]‖2L. (65)

Since Ŝ = Sj with probability 1
l ,

E
[
f(x+ h[Ŝ])

] (65)

≤ 1
l

l∑
j=1

(
f(x) + 〈∇f(x), h[Sj ]〉+ max

J∈J
|J∩Sj |

2 ‖h[Sj ]‖2L
)

(63)
= f(x) + 1

l

〈∇f(x), h〉+ 1
2

l∑
j=1

∑
i∈Sj

γiLi‖h(i)‖2(i)


= f(x) + 1

l

(
〈∇f(x), h〉+ 1

2‖h‖
2
γ�L

)
,

which establishes (64). It now only remains to establish monotonicity. Adding Ω(x + h[Ŝ]) to (65)

with Sj replaced by Ŝ, we get F (x + h[Ŝ]) ≤ f(x) + 〈∇f(x), h[Ŝ]〉 + β
2 ‖h[Ŝ]‖

2
w + Ω(x + h[Ŝ]). From

this point on the proof is identical to that in Theorem 12, following equation (61).

5.3 Nice samplings

In this section we establish an ESO for nice samplings.

Theorem 14. If Ŝ is the τ -nice sampling and τ 6= 0, then

(f, Ŝ) ∼ ESO
(

1 +
(ω − 1)(τ − 1)

max(1, n− 1)
, L

)
. (66)

Proof. Let us �x x and de�ne φ and φJ as in the proof of Theorem 7. Since

E
[
φ(h[Ŝ])

]
= E

[
f(x+ h[Ŝ])− f(x)− 〈∇f(x), h[Ŝ]〉

]
(34)
= E

[
f(x+ h[Ŝ])

]
− f(x)− τ

n〈∇f(x), h〉,

it now only remains to show that

E
[
φ(h[Ŝ])

]
≤ τ

2n

(
1 + (ω−1)(τ−1)

max(1,n−1)

)
‖h‖2L. (67)

Let us now adopt the convention that expectation conditional on an event which happens with

probability 0 is equal to 0. Letting ηJ
def
= |J ∩ Ŝ|, and using this convention, we can write

E
[
φ(h[Ŝ])

]
=
∑
J∈J

E
[
φJ(h[Ŝ])

]
=

n∑
k=0

∑
J∈J

E
[
φJ(h[Ŝ]) | ηJ = k

]
P(ηJ = k)

=
n∑
k=0

P(ηJ = k)
∑
J∈J

E
[
φJ(h[Ŝ]) | ηJ = k

]
. (68)

Note that the last identity follows if we assume, without loss of generality, that all sets J have the
same cardinality ω (this can be achieved by introducing �dummy� dependencies). Indeed, in such
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a case P(ηJ = k) does not depend on J . Now, for any k ≥ 1 for which P(ηJ = k) > 0 (for some J
and hence for all), using convexity of φJ can now estimate

E
[
φJ(h[Ŝ]) | ηJ = k

]
= E

φJ
 1
k

∑
i∈J∩Ŝ

kUih
(i)

 | ηJ = k


≤ E

 1
k

∑
i∈J∩Ŝ

φJ
(
kUih

(i)
)
| ηJ = k

 (40)
= 1

ω

∑
i∈J

φJ
(
kUih

(i)
)
. (69)

If we now sum the inequalities (69) for all J ∈ J , we get

∑
J∈J

E
[
φJ(h[Ŝ]) | ηJ = k

] (69)

≤ 1
ω

∑
J∈J

∑
i∈J

φJ
(
kUih

(i)
)

= 1
ω

∑
J∈J

n∑
i=1

φJ
(
kUih

(i)
)

= 1
ω

n∑
i=1

∑
J∈J

φJ
(
kUih

(i)
)

= 1
ω

n∑
i=1

φ
(
kUih

(i)
)

(50)

≤ 1
ω

n∑
i=1

Li
2 ‖kh

(i)‖2(i) = k2

2ω‖h‖
2
L. (70)

Finally, (67) follows after plugging (70) into (68):

E
[
φ(h[Ŝ])

]
≤
∑
k

P(ηJ = k) k
2

2ω‖h‖
2
L = 1

2ω‖h‖
2
LE[|J ∩ Ŝ|2]

(39)
= τ

2n

(
1 + (ω−1)(τ−1)

max(1,n−1)

)
‖h‖2L.

5.4 Doubly uniform samplings

We are now ready, using a bootstrapping argument, to formulate and prove a result covering all
doubly uniform samplings.

Theorem 15. If Ŝ is a (proper) doubly uniform sampling, then

(f, Ŝ) ∼ ESO

1 +
(ω − 1)

(
E[|Ŝ|2]

E[|Ŝ|]
− 1
)

max(1, n− 1)
, L

 . (71)

Proof. Letting qk = P(|Ŝ| = k) and d = max{1, n− 1}, we have

E
[
f(x+ h[Ŝ])

]
= E

[
E
[
f(x+ h[Ŝ]) | |Ŝ|

]]
=

n∑
k=0

qk E
[
f(x+ h[Ŝ]) | |Ŝ| = k

]
(66)

≤
n∑
k=0

qk

[
f(x) + k

n

(
〈∇f(x), h〉+ 1

2

(
1 + (ω−1)(k−1)

d

)
‖h‖2L

)]
= f(x) + 1

n

n∑
k=0

qkk〈∇f(x), h〉+ 1
2n

n∑
k=1

qk
[
k
(
1− ω−1

d

)
+ k2 ω−1

d

]
‖h‖2L

= f(x) + E[|Ŝ|]
n 〈∇f(x), h〉+ 1

2n

(
E[|Ŝ|]

(
1− ω−1

d

)
+ E[|Ŝ|2]ω−1

d

)
‖h‖2L.
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This theorem could have alternatively been proved by writing Ŝ as a convex combination of nice
samplings and applying Theorem 9.

Note that Theorem 15 reduces to that of Theorem 14 in the special case of a nice sampling, and
gives the same result as Theorem 13 in the case of the serial and fully parallel samplings.

5.5 Summary of results

In Table 2 we summarize all ESO inequalities established in this section. The �rst three results
cover all the remaining ones as special cases.

Ŝ α β w Monotonic? Follows from

uniform E[|Ŝ|]
n 1 ν � L No Thm 12

nonoverlapping uniform n
l 1 γ � L Yes Thm 13

doubly uniform E[|Ŝ|]
n 1 +

(ω−1)

(
E[|Ŝ|2]

E[|Ŝ|]
−1

)
max(1,n−1) L No Thm 15

τ -uniform τ
n min{ω, τ} L Yes Thm 12

τ -nice τ
n 1 + (ω−1)(τ−1)

max(1,n−1) L No Thm 14/15

(τ, pb)-binomial τpb
n 1 + pb(ω−1)(τ−1)

max(1,n−1) L No Thm 15

serial 1
n 1 L Yes Thm 13/14/15

fully parallel 1 ω L Yes Thm 13/14/15

Table 2: Values of parameters β and w of an ESO for partially separable f (of degree ω) and various

proper uniform samplings Ŝ: (f, Ŝ) ∼ ESO(β,w). We also include α = E[|Ŝ|]
n as it appears in the

complexity estimates.

6 Iteration Complexity

In this section we prove two iteration complexity theorems. The �rst result (Theorem 19) is for
non-strongly-convex F and covers PCDM2 with no restrictions and PCDM1 only in the case when
a monotonic ESO is used. The second result (Theorem 20) is for strongly convex F and covers
PCDM1 without any monotonicity restrictions. Let us �rst establish two auxiliary results.

Lemma 16. For all x ∈ domF , Hβ,w(x, h(x)) ≤ miny∈RN {F (y) +
β−µf (w)

2 ‖y − x‖2w}.

Proof.

Hβ,w(x, h(x))
(17)
= min

y∈RN
Hβ,w(x, y − x) = min

y∈RN
f(x) + 〈∇f(x), y − x〉+ Ω(y) + β

2 ‖y − x‖
2
w

(14)

≤ min
y∈RN

f(y)− µf (w)
2 ‖y − x‖2w + Ω(y) + β

2 ‖y − x‖
2
w.
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Lemma 17. (i) Let x∗ be an optimal solution of (1), x ∈ domF and let R = ‖x− x∗‖w. Then

Hβ,w(x, h(x))− F ∗ ≤

{(
1− F (x)−F ∗

2βR2

)
(F (x)− F ∗), if F (x)− F ∗ ≤ βR2,

1
2βR

2 < 1
2(F (x)− F ∗), otherwise.

(72)

(ii) If µf (w) + µΩ(w) > 0 and β ≥ µf (w), then for all x ∈ domF ,

Hβ,w(x, h(x))− F ∗ ≤
β − µf (w)

β + µΩ(w)
(F (x)− F ∗). (73)

Proof. Part (i): Since we do not assume strong convexity, we have µf (w) = 0, and hence

Hβ,w(x, h(x))
(Lemma 16)

≤ min
y∈RN

{F (y) + β
2 ‖y − x‖

2
w}

≤ min
λ∈[0,1]

{F (λx∗ + (1− λ)x) + βλ2

2 ‖x− x
∗‖2w}

≤ min
λ∈[0,1]

{F (x)− λ(F (x)− F ∗) + βλ2

2 R2}.

Minimizing the last expression in λ gives λ∗ = min
{

1, (F (x)− F ∗)/(βR2)
}
; the result follows. Part

(ii): Letting µf = µf (w), µΩ = µΩ(w) and λ∗ = (µf + µΩ)/(β + µΩ) ≤ 1, we have

Hβ,w(x, h(x))
(Lemma 16)

≤ min
y∈RN

{F (y) +
β−µf

2 ‖y − x‖
2
w}

≤ min
λ∈[0,1]

{F (λx∗ + (1− λ)x) +
(β−µf )λ2

2 ‖x− x∗‖2w}

(16)+(15)

≤ min
λ∈[0,1]

{λF ∗ + (1− λ)F (x)− (µf+µΩ)λ(1−λ)−(β−µf )λ2

2 ‖x− x∗‖2w}

≤ F (x)− λ∗(F (x)− F ∗).

The last inequality follows from the identity (µf + µΩ)(1− λ∗)− (β − µf )λ∗ = 0.

We could have formulated part (ii) of the above result using the weaker assumption µF (w) > 0,
leading to a slightly stronger result. However, we prefer the above treatment as it gives more insight.

6.1 Iteration complexity: convex case

The following lemma will be used to �nish o� the proof of the complexity result of this section.

Lemma 18 (Theorem 1 in [13]). Fix x0 ∈ RN and let {xk}k≥0 be a sequence of random vectors
in RN with xk+1 depending on xk only. Let φ : RN → R be a nonnegative function and de�ne
ξk = φ(xk). Lastly, choose accuracy level 0 < ε < ξ0, con�dence level 0 < ρ < 1, and assume that
the sequence of random variables {ξk}k≥0 is nonincreasing and has one of the following properties:

(i) E[ξk+1 | xk] ≤ (1− ξk
c1

)ξk, for all k, where c1 > ε is a constant,

(ii) E[ξk+1 | xk] ≤ (1− 1
c2

)ξk, for all k such that ξk ≥ ε, where c2 > 1 is a constant.
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If property (i) holds and we choose K ≥ 2 + c1
ε (1 − ε

ξ0
+ log(1

ρ)), or if property (ii) holds, and we

choose K ≥ c2 log( ξ0ερ), then P(ξK ≤ ε) ≥ 1− ρ.

This lemma was recently extended in [10] so as to aid the analysis of a serial coordinate descent
method with inexact updates, i.e., with h(x) chosen as an approximate rather than exact minimizer
of H1,L(x, ·) (see (17)). While in this paper we deal with exact updates only, the results can be
extended to the inexact case.

Theorem 19. Assume that (f, Ŝ) ∼ ESO(β,w), where Ŝ is a proper uniform sampling, and let

α = E[|Ŝ|]
n . Choose x0 ∈ RN satisfying

Rw(x0, x
∗)

def
= max

x
{‖x− x∗‖w : F (x) ≤ F (x0)} < +∞, (74)

where x∗ is an optimal point of (1). Further, choose target con�dence level 0 < ρ < 1, target
accuracy level ε > 0 and iteration counter K in any of the following two ways:

(i) ε < F (x0)− F ∗ and

K ≥ 2 +
2
(
β
α

)
max

{
R2
w(x0, x

∗), F (x0)−F ∗
β

}
ε

(
1− ε

F (x0)− F ∗
+ log

(
1

ρ

))
, (75)

(ii) ε < min{2
(
β
α

)
R2
w(x0, x

∗), F (x0)− F ∗} and

K ≥
2
(
β
α

)
R2
w(x0, x

∗)

ε
log

(
F (x0)− F ∗

ερ

)
. (76)

If {xk}, k ≥ 0, are the random iterates of PCDM (use PCDM1 if the ESO is monotonic, otherwise
use PCDM2), then P(F (xK)− F ∗ ≤ ε) ≥ 1− ρ.

Proof. Since either PCDM2 is used (which is monotonic) or otherwise the ESO is monotonic, we
must have F (xk) ≤ F (x0) for all k. In particular, in view of (74) this implies that ‖xk − x∗‖w ≤
Rw(x0, x

∗). Letting ξk = F (xk)− F ∗, we have

E[ξk+1 | xk]
(43)

≤ (1− α)ξk + α(Hβ,w(xk, h(xk))− F ∗)
(72)

≤ (1− α)ξk + αmax

{
1− ξk

2β‖xk − x∗‖2w
,
1

2

}
ξk

= max

{
1− αξk

2β‖xk − x∗‖2w
, 1− α

2

}
ξk

≤ max

{
1− αξk

2βR2
w(x0, x∗)

, 1− α

2

}
ξk. (77)

Consider case (i) and let c1 = 2βα max{R2
w(x0, x

∗), ξ0β }. Continuing with (77), we then get

E[ξk+1 | xk] ≤ (1− ξk
c1

)ξk

for all k ≥ 0. Since ε < ξ0 < c1, it su�ces to apply Lemma 18(i). Consider now case (ii) and let

c2 = 2βα
R2
w(x0,x∗)

ε . Observe now that whenever ξk ≥ ε, from (77) we get E[ξk+1 | xk] ≤ (1 − 1
c2

)ξk.
By assumption, c2 > 1, and hence it remains to apply Lemma 18(ii).
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The important message of the above theorem is that the iteration complexity of our methods in
the convex case is O(βα

1
ε ). Note that for the serial method (PCDM1 used with Ŝ being the serial

sampling) we have α = 1
n and β = 1 (see Table 2), and hence β

α = n. It will be interesting to study
the parallelization speedup factor de�ned by

parallelization speedup factor =
β
α of the serial method
β
α of a parallel method

=
n

β
α of a parallel method

. (78)

Table 3, computed from the data in Table 2, gives expressions for the parallelization speedup
factors for PCDM based on a DU sampling (expressions for 4 special cases are given as well).

Ŝ Parallelization speedup factor

doubly uniform E[|Ŝ|]

1+
(ω−1)((E[|Ŝ|2]/E[|Ŝ|])−1)

max(1,n−1)

(τ, pb)-binomial τ
1
pb

+
(ω−1)(τ−1)
max(1,n−1)

τ -nice τ

1+
(ω−1)(τ−1)
max(1,n−1)

fully parallel n
ω

serial 1

Table 3: Convex F : Parallelization speedup factors for DU samplings. The factors below the line
are special cases of the general expression. Maximum speedup is naturally obtained by the fully
parallel sampling: n

ω .

The speedup of the serial sampling (i.e., of the algorithm based on it) is 1 as we are comparing
it to itself. On the other end of the spectrum is the fully parallel sampling with a speedup of n

ω .
If the degree of partial separability is small, then this factor will be high � especially so if n is
huge, which is the domain we are interested in. This provides an a�rmative answer to the research
question stated in italics in the introduction.

Let us now look at the speedup factor in the case of a τ -nice sampling. Letting r = ω−1
max(1,n−1) ∈

[0, 1] (degree of partial separability normalized), the speedup factor can be written as

s(r) =
τ

1 + r(τ − 1)
.

Note that as long as r ≤ k−1
τ−1 ≈

k
τ , the speedup factor will be at least

τ
k . Also note that max{1, τω} ≤

s(r) ≤ min{τ, nω}. Finally, if a speedup of at least s is desired, where s ∈ [0, nω ], one needs to use at
least 1−r

1/s−r processors. For illustration, in Figure 1 we plotted s(r) for a few values of τ . Note that

for small values of τ , the speedup is signi�cant and can be as large as the number of processors (in
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the separable case). We wish to stress that in many applications ω will be a constant independent
of n, which means that r will indeed be very small in the huge-scale optimization setting.

Figure 1: Parallelization speedup factor of PCDM1/PCDM2 used with τ -nice sampling as a function
of the normalized/relative degree of partial separability r.

6.2 Iteration complexity: strongly convex case

In this section we assume that F is strongly convex with respect to the norm ‖ · ‖w and show that
F (xk) converges to F

∗ linearly, with high probability.

Theorem 20. Assume F is strongly convex with µf (w) + µΩ(w) > 0. Further, assume (f, Ŝ) ∼
ESO(β,w), where Ŝ is a proper uniform sampling and let α = E[|Ŝ|]

n . Choose initial point x0 ∈ RN ,
target con�dence level 0 < ρ < 1, target accuracy level 0 < ε < F (x0)− F ∗ and

K ≥ 1

α

β + µΩ(w)

µf (w) + µΩ(w)
log

(
F (x0)− F ∗

ερ

)
. (79)

If {xk} are the random points generated by PCDM1 or PCDM2, then P(F (xK)− F ∗ ≤ ε) ≥ 1− ρ.

Proof. Letting ξk = F (xk)− F ∗, we have

E[ξk+1 | xk]
(43)

≤ (1− α)ξk + α(Hβ,w(xk, h(xk))− F ∗)
(73)

≤
(

1− αµf (w)+µΩ(w)
β+µΩ(w)

)
ξk

def
= (1− γ)ξk.

Note that 0 < γ ≤ 1 since 0 < α ≤ 1 and β ≥ µf (w) by (46). By taking expectation in xk, we
obtain E[ξk] ≤ (1− γ)kξ0. Finally, it remains to use Markov inequality:

P(ξK > ε) ≤ E[ξK ]

ε
≤ (1− γ)Kξ0

ε

(79)

≤ ρ.
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Instead of doing a direct calculation, we could have �nished the proof of Theorem 20 by applying
Lemma 18(ii) to the inequality E[ξk+1 | xk] ≤ (1 − γ)ξk. However, in order to be able to use
Lemma 18, we would have to �rst establish monotonicity of the sequence {ξk}, k ≥ 0. This is not
necessary using the direct approach of Theorem 20. Hence, in the strongly convex case we can
analyze PCDM1 and are not forced to resort to PCDM2. Consider now the following situations:

1. µf (w) = 0. Then the leading term in (79) is 1+β/µΩ(w)
α .

2. µΩ(w) = 0. Then the leading term in (79) is
β/µf (w)

α .

3. µΩ(w) is �large enough�. Then β+µΩ(w)
µf (w)+µΩ(w) ≈ 1 and the leading term in (79) is 1

α .

In a similar way as in the non-strongly convex case, de�ne the parallelization speedup factor as the
ratio of the leading term in (79) for the serial method (which has α = 1

n and β = 1) and the leading
term for a parallel method:

parallelization speedup factor =
n 1+µΩ(w)
µf (w)+µΩ(w)

1
α

β+µΩ(w)
µf (w)+µΩ(w) of a parallel method

=
n

β+µΩ(w)
α(1+µΩ(w))

. (80)

First, note that the speedup factor is independent of µf . Further, note that as µΩ(w) → 0,
the speedup factor approaches the factor we obtained in the non-strongly convex case (see (78)
and also Table 3). That is, for large values of µΩ(w), the speedup factor is approximately equal
αn = E[|Ŝ|], which is the average number of blocks updated in a single parallel iteration. Note that
thuis quantity does not depend on the degree of partial separability of f .

7 Numerical Experiments

In Section 7.1 we present preliminary but very encouraging results showing that PCDM1 run on
a system with 24 cores can solve huge-scale partially-separable LASSO problems with a billion
variables in 2 hours, compared with 41 hours on a single core. In Section 7.2 we demonstrate that
our analysis is in some sense tight. In particular, we show that the speedup predicted by the theory
can be matched almost exactly by actual wall time speedup for a particular problem.

7.1 A LASSO problem with 1 billion variables

In this experiment we solve a single randomly generated huge-scale LASSO instance, i.e., (1) with

f(x) = 1
2‖Ax− b‖

2
2, Ω(x) = ‖x‖1,

where A = [a1, . . . , an] has 2 × 109 rows and N = n = 109 columns. We generated the problem
using a modi�ed primal-dual generator [13] enabling us to choose the optimal solution x∗ (and
hence, indirectly, F ∗) and thus to control its cardinality ‖x∗‖0, as well as the sparsity level of A. In
particular, we made the following choices: ‖x∗‖0 = 105, each column of A has exactly 20 nonzeros
and the maximum cardinality of a row of A is ω = 35 (the degree of partial separability of f). The
histogram of cardinalities is displayed in Figure 2.

We solved the problem using PCDM1 with τ -nice sampling Ŝ, β = 1 + (ω−1)(τ−1)
n−1 and w = L =

(‖a1‖22, · · · , ‖an‖22), for τ = 1, 2, 4, 8, 16, 24, on a single large-memory computer utilizing τ of its 24
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Figure 2: Histogram of the cardinalities of the rows of A.

cores. The problem description took around 350GB of memory space. In fact, in our implementation
we departed from the just described setup in two ways. First, we implemented an asynchronous
version of the method; i.e., one in which cores do not wait for others to update the current iterate
within an iteration before reading xk+1 and proceeding to another update step. Instead, each core
reads the current iterate whenever it is ready with the previous update step and applies the new
update as soon as it is computed. Second, as mentioned in Section 3, the τ -independent sampling is
for τ � n a very good approximation of the τ -nice sampling. We therefore allowed each processor
to pick a block uniformly at random, independently from the other processors.

Choice of the �rst column of Table 4. In Table 4 we show the development of the gap
F (xk)−F ∗ as well as the elapsed time. The choice and meaning of the �rst column of the table, τkn ,
needs some commentary. Note that exactly τk coordinate updates are performed after k iterations.
Hence, the �rst column denotes the total number of coordinate updates normalized by the number
of coordinates n. As an example, let τ1 = 1 and τ2 = 24. Then if the serial method is run for
k1 = 24 iterations and the parallel one for k2 = 1 iteration, both methods would have updated the
same number (τ1k1 = τ2k2 = 24) of coordinates; that is, they would �be� in the same row of Table 4.
In summary, each row of the table represents, in the sense described above, the �same amount of
work done� for each choice of τ .

Progress to solving the problem. One can conjecture that the above meaning of the phrase
�same amount of work done� would perhaps be roughly equivalent to a di�erent one: �same progress
to solving the problem�. Indeed, it turns out, as can be seen from the table and also from Fig-
ure 3(a), that in each row for all algorithms the value of F (xk)−F ∗ is roughly of the same order of
magnitude. This is not a trivial �nding since, with increasing τ , older information is used to update
the coordinates, and hence one would expect that convergence would be slower. It does seem to be
slower�the gap F (xk) − F ∗ is generally higher if more processors are used�but the slowdown is
limited. Looking at Table 4 and/or Figure 3(a), we see that for all choices of τ , PCDM1 managed
to push the gap below 10−13 after 34n to 37n coordinate updates.

The progress to solving the problem during the �nal 1 billion coordinate updates (i.e., when
moving from the last-but-one to the last nonempty line in each of the columns of Table 4 showing
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Table 4: A LASSO problem with 109 variables solved by PCDM1 with τ = 1, 2, 4, 8, 16 and 24.

F (xk) − F ∗ ) is remarkable. The method managed to push the optimality gap by 9-12 degrees of
magnitude. We do not have an explanation for this phenomenon; we do not give local convergence
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(a) For each τ , PCDM1 needs roughly the same number
of coordinate updates to solve the problem.

0 10 20 30 40

10
−10

10
0

10
10

10
20

# iterations normalized [k/n]

F
(x

k)−
F

*

 

 

1 Core
2 Cores
4 Cores
8 Cores
16 Cores
24 Cores

(b) Doubling the number of cores corresponds to
roughly halving the number of iterations.
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(d) Parallelization speedup is essentially equal to the
number of cores.

Figure 3: Four computational insights into the workings of PCDM1.

estimates in this paper. It is certainly the case though that once the method managed to �nd the
nonzero places of x∗, fast local convergence comes in.

Parallelization speedup. Since a parallel method utilizing τ cores manages to do the same
number of coordinate updates as the serial one τ times faster, a direct consequence of the above
observation is that doubling the number of cores corresponds to roughly halving the number of
iterations (see Figure 3(b). This is due to the fact that ω � n and τ � n. It turns out that
the number of iterations is an excellent predictor of wall time; this can be seen by comparing
Figures 3(b) and 3(c). Finally, it follows from the above, and can be seen in Figure 3(d), that the
speedup of PCDM1 utilizing τ cores is roughly equal to τ . Note that this is caused by the fact that
the problem is, relative to its dimension, partially separable to a very high degree.
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7.2 Theory versus reality

In our second experiment we demonstrate numerically that our parallelization speedup estimates
are in some sense tight. For this purpose it is not necessary to reach for complicated problems and
high dimensions; we hence minimize the function 1

2‖Ax − b‖
2
2 with A ∈ R3000×1000. Matrix A was

generated so that its every row contains exactly ω non-zero values all of which are equal (recall the
construction in point 3 at the end of Section 4.1).
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Figure 4: Theoretical speedup factor predicts the actual speedup almost exactly for a carefully
constructed problem.

We generated 4 matrices with ω = 5, 10, 50 and 100 and measured the number of iterations
needed for PCDM1 used with τ -nice sampling to get within ε = 10−6 of the optimal value. The
experiment was done for a range of values of τ (between 1 core and 1000 cores).

The solid lines in Figure 4 present the theoretical speedup factor for the τ -nice sampling, as
presented in Table 3. The markers in each case correspond to empirical speedup factor de�ned as

# of iterations till ε-solution is found by PCDM1 used with serial sampling

# of iterations till ε-solution is found by PCDM1 used with τ -nice sampling
.

As can be seen in Figure 4, the match between theoretical prediction and reality is remarkable! A
partial explanation of this phenomenon lies in the fact that we have carefully designed the problem
so as to ensure that the degree of partial separability is equal to the Lipschitz constant σ of ∇f (i.e.,
that it is not a gross overestimation of it; see Section 4.1). This fact is useful since it is possible to
prove complexity results with ω replaced by σ. However, this answer is far from satisfying, and a
deeper understanding of the phenomenon remains an open problem.
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